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Period doubling of a torus: Chaotic breathing of a localized wave

Jung-Im Kim, Hwa-Kyun Park, and Hie-Tae Moon
Department of Physics, Korea Advanced Institute of Science and Technology, Daeduk Science-town 305-701, Korea
(Received 11 September 1996

This study identifies the existence of a novel route to chaos from a fixed point, to a limit cycle, to a torus,
and then a cascade of period doubling of the torus, which has been predicted theoretically. This route to chaos
has been found in the destabilization of a solitonlike structure present in a continuous dissipative medium.
[S1063-651%97)11803-1

PACS numbgs): 05.45:+b, 02.40-k, 03.40.Kf, 47.52+]

Much effort has been devoted to the understanding ofchlichting wave$10], and also the dynamics of the travel-
chaotic behavior in dissipative dynamical systems in recening waves occurring in binary-fluid-mixtures convection
years. One of the questions of great interest lately concerns[&,9].
transition to chaos through a torus, i.e., a dynamical motion For the set of parameter valueg,=—0.15, 8=1.5,
characterized by two incommensurate frequencies. As ong= —1.0, andé=2.0, the system admits a solitonlike struc-
way a torus can be destabilized, many researchers have nie. Figure 1a) shows the localized wave obtained by inte-
ticed that a torus is destabilized by successive period douwrating Eq.(1) numerically. This localized wave is created
bling (often referred to as torus doublindsuch an investi- by perturbing the statée=0 with a Gaussian shape wave of
gation has been based on the study of the abstract lowa sufficient amplitude. If the perturbing amplitude is too
dimensional iterative mappings. The mappings model amall, the localized wave damps to zero. If the coefficients of
discrete flow obtained by the method of Poincaveface of  Eq. (1) are real, the system becomes purely dissipative, and
section, from a continuous flow governed by differentialthe equation can be put in a variational form which gives a
equations. solution of unstable localized waves. However, if the coeffi-

Kaneko[1] found a torus doubling in the study of three- cients are complex, as they are here, localized waves can be
and four-dimensional dissipative mappings. In the seven-
mode study of the Navier-Stokes equations, FrancesfRjni
observed two successive torus doublings, followed by a t
strange attractor. Arglo et al. [3] also found that a torus
may undergo a few doublings before being replaced by a '*®
strange attractor in their investigation of three-dimensional
dissipative mappings. Significantly, their three-dimensional
model could show a cascade of an infinite number of torus ¢4
doublings in the transition into a strange attractor. This dis-
covery implies that the same dynamic behavior may also
exist in real physical systems. Experimentally, the phenom-
enon of the torus doubling was observed in the Rayleigh- s
Benard convectiofi4,5], in the convection in molten gallium
[6], and in the electrochemical reactiofi¥q.

Up to now, theoretical investigations of torus doubling
have been focused on abstract low-dimensional model equa-
tions mainly because it is very difficult to find a low-
dimensional subspace confining a chaotic attractor for an
infinite-dimensional dynamical system. In our investigations
of destabilization mechanisms of localized structures in con-
tinuous media, we could actually identify the existence of the
cascade of torus doubling in a localized structure present in
the quintic complex Ginzburg-Landau equati@?9l:
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whereu, «, B, v, andé are all real . measures the distance

from criticality. Equation(1) describes the dynamics of the  FIG. 1. Destabilization of a solitonlike coherent wave) A
two-dimensional disturbances of the plane Poiseuille flowsolitonlike pulse ¢=0.25). (b) Periodic breathing of the pulse
with ¢ representing the complex amplitude of Tollmien- («=0.23).(c) Chaotic breathing of the pulsex&0.2201).
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FIG. 2. Time series of the maximum amplitude of the pulses. The time series are obtained at a fixed spatial fixae-dont &) Fixed
amplitude for the solitonlike pulse{=0.25).(b) Periodic oscillation withw; (a=0.23).(c) Quasiperiodic oscillatioritorug with 4, and
Aw=27/T (a«=0.225).(d) Quasiperiodic oscillation witlw; and A w/2: period doubling of the torusa(=0.2215).(e) Secondary period
doubling of the torus ¢=0.2206).(f) Chaotic oscillation &=0.2201).

stablized in the vicinity of a subcritical instability. whose frequency is denoted hyw in the corresponding
We found the cascade of torus doubling from this soliton-power spectrum shown in Fig(l9. This amplitude modula-
like structure. Asw is reduced, the solitonlike structure starts tion frequencyA can be considered as the beat frequency
to be destabilized. The amplitude of the solitonlike structureof the two frequencies»; and w,: Since w; and w, are
undergoes from a fixed state to a periodic state with freindependentw; and Aw are independent. We shall denote
quencyw; to a quasiperiodic state with two incommensuratethe frequencies; andw, as “carrier frequencies” and the
frequenciesw,, w,, and then a cascade of period doubling frequencyAw as a “beat frequency.” The beat frequency
in the beat(modulation frequencyAw=w,— w,. Eventu- AQ correspondg to the freqluem.:y of the slow time scale am-
ally, we observe chaotic breathing of the localized structurePlitude modulation with period” in Fig. 20).
The periodic breathing of the wave and the chaotic breathingh In the following time series shown in Fig(®, we found

; ; P ; t the period of the slow time scale amplitude modulation
of the wave are displayed, respectively, in Figy)land Fig. a . !
1(c). Notice that the waves remain localized with time. has doubled, becomingT2 The corresponding frequency has

Since the localized waves maintain spatial coherencehalved asAw/2, and all other frequencies present in the

. X . . : Power spectrum can be expressed as a linear combination of
the|r' dynamics can be dgscnbed by. the time series of the'ﬁmo independent frequenciea,; and Aw/2. For example,
maximum amplitude. In Fig. 2, we displayed the time serie

: : Yhe w3 lying in between w; and w, satisfies
of the amplitude of the waves for various valuesagfwhere w3=w;—Awl2. For this state, we may consider agaim

a decreases from top to bottom. Whea is high 504, " as two independent frequencies ahd/2 as their
(@=0.25), the amplitude of the solitonlike structure be- o5t frequencyA w/2= w; — ws. This way, we find that the
comes stabilized and fixed. Asa is reduced pegt frequency is halved.

(0.225<a<0.25), the amplitude starts to oscillate with a | the following state, we find that the beat frequency is
single frequency, sayw; [Fig. 1(b)]. The corresponding further halved, and more frequencies are generated in the
power spectrum in Fig. (@ shows this frequency. A& is  power spectrum as a result of the linear combinatior of
reduced further, the amplitude shows an additional oscillaand A w/4. The power spctrum shows clearly how the new
tory motion with a larger period denoted Byin Fig. 2c),  frequencies are generated.
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FIG. 3. Power spectra of the time series of Fig(&).«=0.23.(b) Quasiperiodic state witw,; and w,, Aw=w;— w, (¢=0.225).(c)
Enlargement of the range denoted b®™in (b) whena=0.2215.0w3= w;— Aw/4. (d) Further enlargement of the range denoted /"
in (c) whena=0.2206.

To see whether the period doubling continues in the slow Period doubling of the torus, as decreases, is clearly
time scale, we analyzed again the time series displayed iportrayed in Fig. 4. From this observation, we can expect
Fig. 2, but this time, we observed the time series stroboscopthat thenth subharmonics,, are excited successively at the
cally at the fast frequency, . Starting from any one of the |eft side of thew, at a distanced w/2" 2 (or (w;— wy)/
extrema, we then obtained a series of discrete dafa,  >n-2) heren=3. Eventually, as illustrated in Fig(d), the
N=12,..., for each time series wheréy's are local trajectory forms circular bands. The merging of the bands,
extrema as indicated in Fig. 2. To search for any order thaj hich bles th bif i f the famili
might exist between successive outcorgsand Py, ¢, we which resembles he reverse biiurcations of the tamiliar
have plottedPy, ; as a function oy for all the time series theory of period doubling, is depicted in Figif# The evo-
shown in Fig. 2. The results are shown in Fig. 4. In the casdution of the trajectories displayed in Fig. 4 is believed to be
of the single frequency motion witl,, shown in Fig. 2d), enough evidence for the existence of a cascade of period
for which the resulting Py's are all the same, its doubling of a torus. Actually the similar plots as shown here
Pni1— Py plot shows only one fixed point denoted by are what were observed in the study of the three-dimensional
“0O”in Fig. 4(a). mappings by Arnedoet al. and became the theoretical basis

For the biperiodic motion with two frequencies, and  for the possible existence of the cascade of period doubling
Aw=27IT, its Py, 1— Py plot removes the frequency,;  of a torus.
and gives a trajectory making a closed loop circular motion Next, we want to confirm that the final plot in Fig(fj
around the fixed point O with period T. So a circular indeed describes a chaotic behavior. For that purpose, we
closed orbit on thePy . ;— Py plane indicates that the mo- further reduced the dynamics into an iterative one-
tion is biperiodic and the fact that the trajectory completelydimensional mapping. In the corresponding time series
fills up the loop indicates that the motion is indeed quasi-shown in Fig. 2f), we considered the slow time scale ex-
periodic. trema, denoted bRy, N=1,2,. .. . From this set of data,
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FIG. 4. Py, as a function ofPy, N=1,2,...,© (cf. Fig. 2.
Py is thenth extremum of the amplitude of the pulge) The fixed

point “O” represents the periodically oscillating amplitude with
frequencyw,. The closed orbit aroundO” represents a torus cor-
responding to the quasiperiodic state of Fig)2The period of this

closed orbit isT. (b) Period doubling of the torusa(=0.2215).(c)
a=0.2206.(d) «=0.220 46.(e) a=0.2203.(f) «=0.2201.

we constructed a return mdy,; as a functiorRy, which
is shown in Fig. 5. Since the map is concave down, and haand Telecommunications Research Institute and in part by
a smooth maximum, it is a quadratic type map. It is wellthe Korea Science and Engineering Foundation.

FIG. 5. Return map constructed from the slow-time scale ex-
tremaRy, N=1,2,... %, for the chaotically breathing stafef.

Fig. 2f)].

established that this type of map indeed describes a chaotic
behavior. The thickness in the map results from the discrep-
ancy in the maximum values of the discrélg and the true
maxima of the continuous envelope of the localized wave.
But the map still gives a definite form of the quadratic map,
and therefore gives concrete evidence that the behavior is
indeed chaotic. Indeed this type of map has been the basis
for Feigenbaum’s period doubling theory. This extraction of
a quadratic-type map from the cascade of the torus doubling
implies the broad applicability of Feigenbaum’s period dou-
bling theory.

We finally point out that some theorig$,11,14 and most
experiments reported that torus doubling cascade would be
difficult to observe. But, recent experiments in Rayleigh-
Benard convectiofi5] have shown that the whole scenario of
a torus doubling does exist.

In conclusion, we have identified the existence of a novel
route to chaos, from a fixed point, to a limit cycle, to a torus,
and then a cascade of period doubling of the torus, which has
been predicted theoretically. Significantly, we found the cas-
cade of torus doubling in the destabilization of a localized
structure in a continuous medium.
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