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Period doubling of a torus: Chaotic breathing of a localized wave

Jung-Im Kim, Hwa-Kyun Park, and Hie-Tae Moon
Department of Physics, Korea Advanced Institute of Science and Technology, Daeduk Science-town 305-701, Korea

~Received 11 September 1996!

This study identifies the existence of a novel route to chaos from a fixed point, to a limit cycle, to a torus,
and then a cascade of period doubling of the torus, which has been predicted theoretically. This route to chaos
has been found in the destabilization of a solitonlike structure present in a continuous dissipative medium.
@S1063-651X~97!11803-7#

PACS number~s!: 05.45.1b, 02.40.2k, 03.40.Kf, 47.52.1j
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Much effort has been devoted to the understanding
chaotic behavior in dissipative dynamical systems in rec
years. One of the questions of great interest lately concer
transition to chaos through a torus, i.e., a dynamical mo
characterized by two incommensurate frequencies. As
way a torus can be destabilized, many researchers have
ticed that a torus is destabilized by successive period d
bling ~often referred to as torus doubling!. Such an investi-
gation has been based on the study of the abstract
dimensional iterative mappings. The mappings mode
discrete flow obtained by the method of Poincare´ surface of
section, from a continuous flow governed by different
equations.

Kaneko@1# found a torus doubling in the study of thre
and four-dimensional dissipative mappings. In the sev
mode study of the Navier-Stokes equations, Franceschin@2#
observed two successive torus doublings, followed by
strange attractor. Arne´odo et al. @3# also found that a torus
may undergo a few doublings before being replaced b
strange attractor in their investigation of three-dimensio
dissipative mappings. Significantly, their three-dimensio
model could show a cascade of an infinite number of to
doublings in the transition into a strange attractor. This d
covery implies that the same dynamic behavior may a
exist in real physical systems. Experimentally, the pheno
enon of the torus doubling was observed in the Raylei
Bénard convection@4,5#, in the convection in molten gallium
@6#, and in the electrochemical reactions@7#.

Up to now, theoretical investigations of torus doublin
have been focused on abstract low-dimensional model e
tions mainly because it is very difficult to find a low
dimensional subspace confining a chaotic attractor for
infinite-dimensional dynamical system. In our investigatio
of destabilization mechanisms of localized structures in c
tinuous media, we could actually identify the existence of
cascade of torus doubling in a localized structure presen
the quintic complex Ginzburg-Landau equation@8,9#:

]c

]t
5mc1~a1i !

]2c

]x2
1~b12i !ucu2c1~g1id!ucu4c,

~1!

wherem, a, b, g, andd are all real.m measures the distanc
from criticality. Equation~1! describes the dynamics of th
two-dimensional disturbances of the plane Poiseuille fl
with c representing the complex amplitude of Tollmie
551063-651X/97/55~4!/3948~4!/$10.00
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Schlichting waves@10#, and also the dynamics of the travel
ing waves occurring in binary-fluid-mixtures convectio
@8,9#.

For the set of parameter values,m520.15, b51.5,
g521.0, andd52.0, the system admits a solitonlike struc
ture. Figure 1~a! shows the localized wave obtained by inte
grating Eq.~1! numerically. This localized wave is create
by perturbing the statec50 with a Gaussian shape wave o
a sufficient amplitude. If the perturbing amplitude is to
small, the localized wave damps to zero. If the coefficients
Eq. ~1! are real, the system becomes purely dissipative, a
the equation can be put in a variational form which gives
solution of unstable localized waves. However, if the coef
cients are complex, as they are here, localized waves can

FIG. 1. Destabilization of a solitonlike coherent wave.~a! A
solitonlike pulse (a50.25). ~b! Periodic breathing of the pulse
(a50.23). ~c! Chaotic breathing of the pulse (a50.2201).
3948 © 1997 The American Physical Society
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FIG. 2. Time series of the maximum amplitude of the pulses. The time series are obtained at a fixed spatial fixed point (x510). ~a! Fixed
amplitude for the solitonlike pulse (a50.25).~b! Periodic oscillation withv1 (a50.23).~c! Quasiperiodic oscillation~torus! with v1 and
Dv52p/T (a50.225).~d! Quasiperiodic oscillation withv1 andDv/2: period doubling of the torus (a50.2215).~e! Secondary period
doubling of the torus (a50.2206).~f! Chaotic oscillation (a50.2201).
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stablized in the vicinity of a subcritical instability.
We found the cascade of torus doubling from this solito

like structure. Asa is reduced, the solitonlike structure star
to be destabilized. The amplitude of the solitonlike struct
undergoes from a fixed state to a periodic state with
quencyv1 to a quasiperiodic state with two incommensura
frequencies,v1, v2, and then a cascade of period doubli
in the beat~modulation! frequencyDv5v12v2. Eventu-
ally, we observe chaotic breathing of the localized structu
The periodic breathing of the wave and the chaotic breath
of the wave are displayed, respectively, in Fig. 1~b! and Fig.
1~c!. Notice that the waves remain localized with time.

Since the localized waves maintain spatial coheren
their dynamics can be described by the time series of t
maximum amplitude. In Fig. 2, we displayed the time ser
of the amplitude of the waves for various values ofa, where
a decreases from top to bottom. Whena is high
(a50.25), the amplitude of the solitonlike structure b
comes stabilized and fixed. Asa is reduced
(0.225,a,0.25), the amplitude starts to oscillate with
single frequency, say,v1 @Fig. 1~b!#. The corresponding
power spectrum in Fig. 3~a! shows this frequency. Asa is
reduced further, the amplitude shows an additional osc
tory motion with a larger period denoted byT in Fig. 2~c!,
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whose frequency is denoted byDv in the corresponding
power spectrum shown in Fig. 3~b!. This amplitude modula-
tion frequencyDv can be considered as the beat frequen
of the two frequenciesv1 and v2: Sincev1 and v2 are
independent,v1 andDv are independent. We shall deno
the frequenciesv1 andv2 as ‘‘carrier frequencies’’ and the
frequencyDv as a ‘‘beat frequency.’’ The beat frequenc
Dv corresponds to the frequency of the slow time scale a
plitude modulation with periodT in Fig. 2~c!.

In the following time series shown in Fig. 2~d!, we found
that the period of the slow time scale amplitude modulat
has doubled, becoming 2T. The corresponding frequency ha
halved asDv/2, and all other frequencies present in t
power spectrum can be expressed as a linear combinatio
two independent frequencies,v1 and Dv/2. For example,
the v3 lying in between v1 and v2 satisfies
v35v12Dv/2. For this state, we may consider againv1
andv3 as two independent frequencies andDv/2 as their
beat frequency,Dv/25v12v3. This way, we find that the
beat frequency is halved.

In the following state, we find that the beat frequency
further halved, and more frequencies are generated in
power spectrum as a result of the linear combination ofv1
andDv/4. The power spctrum shows clearly how the ne
frequencies are generated.
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FIG. 3. Power spectra of the time series of Fig. 2.~a! a50.23. ~b! Quasiperiodic state withv1 andv2, Dv5v12v2 (a50.225).~c!
Enlargement of the range denoted by ‘‘D ’’ in ~b! whena50.2215.v35v12Dv/4. ~d! Further enlargement of the range denoted by ‘‘D ’’
in ~c! whena50.2206.
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To see whether the period doubling continues in the s
time scale, we analyzed again the time series displaye
Fig. 2, but this time, we observed the time series strobosc
cally at the fast frequencyv1. Starting from any one of the
extrema, we then obtained a series of discrete data,PN ,
N51,2, . . . ,`, for each time series wherePN’s are local
extrema as indicated in Fig. 2. To search for any order
might exist between successive outcomesPN andPN11, we
have plottedPN11 as a function ofPN for all the time series
shown in Fig. 2. The results are shown in Fig. 4. In the c
of the single frequency motion withv1, shown in Fig. 2~d!,
for which the resulting PN’s are all the same, its
PN112PN plot shows only one fixed point denoted b
‘‘O’’ in Fig. 4~a!.

For the biperiodic motion with two frequenciesv1 and
Dv52p/T, its PN112PN plot removes the frequencyv1
and gives a trajectory making a closed loop circular mot
around the fixed point ‘‘O’’ with period T. So a circular
closed orbit on thePN112PN plane indicates that the mo
tion is biperiodic and the fact that the trajectory complet
fills up the loop indicates that the motion is indeed qua
periodic.
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Period doubling of the torus, asa decreases, is clearly
portrayed in Fig. 4. From this observation, we can exp
that thenth subharmonicsvn are excited successively at th
left side of thev1 at a distanceDv/2n22 ~or (v12v2)/
2n22) wheren>3. Eventually, as illustrated in Fig. 4~e!, the
trajectory forms circular bands. The merging of the ban
which resembles the reverse bifurcations of the fami
theory of period doubling, is depicted in Fig. 4~f!. The evo-
lution of the trajectories displayed in Fig. 4 is believed to
enough evidence for the existence of a cascade of pe
doubling of a torus. Actually the similar plots as shown he
are what were observed in the study of the three-dimensio
mappings by Arne´odoet al.and became the theoretical bas
for the possible existence of the cascade of period doub
of a torus.

Next, we want to confirm that the final plot in Fig. 4~f!
indeed describes a chaotic behavior. For that purpose,
further reduced the dynamics into an iterative on
dimensional mapping. In the corresponding time ser
shown in Fig. 2~f!, we considered the slow time scale e
trema, denoted byRN , N51,2, . . . ,`. From this set of data,
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we constructed a return mapRN11 as a functionRN , which
is shown in Fig. 5. Since the map is concave down, and h
a smooth maximum, it is a quadratic type map. It is we

FIG. 4. PN11 as a function ofPN , N51,2, . . . ,` ~cf. Fig. 2!.
PN is thenth extremum of the amplitude of the pulse.~a! The fixed
point ‘‘O’’ represents the periodically oscillating amplitude with
frequencyv1. The closed orbit around ‘‘O’’ represents a torus cor-
responding to the quasiperiodic state of Fig. 2~c!. The period of this
closed orbit isT. ~b! Period doubling of the torus (a50.2215).~c!
a50.2206.~d! a50.220 46.~e! a50.2203.~f! a50.2201.
e

as
l

established that this type of map indeed describes a cha
behavior. The thickness in the map results from the discr
ancy in the maximum values of the discretePN and the true
maxima of the continuous envelope of the localized wa
But the map still gives a definite form of the quadratic ma
and therefore gives concrete evidence that the behavio
indeed chaotic. Indeed this type of map has been the b
for Feigenbaum’s period doubling theory. This extraction
a quadratic-type map from the cascade of the torus doub
implies the broad applicability of Feigenbaum’s period do
bling theory.

We finally point out that some theories@1,11,12# and most
experiments reported that torus doubling cascade would
difficult to observe. But, recent experiments in Rayleig
Bénard convection@5# have shown that the whole scenario
a torus doubling does exist.

In conclusion, we have identified the existence of a no
route to chaos, from a fixed point, to a limit cycle, to a toru
and then a cascade of period doubling of the torus, which
been predicted theoretically. Significantly, we found the c
cade of torus doubling in the destabilization of a localiz
structure in a continuous medium.

We acknowledge the support in part by the Electron
and Telecommunications Research Institute and in part
the Korea Science and Engineering Foundation.

FIG. 5. Return map constructed from the slow-time scale
tremaRN , N51,2, . . . ,`, for the chaotically breathing state@cf.
Fig. 2~f!#.
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